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In this paper we introduce a method to simulate lateral diffusion of inclusions in a fluctuating membrane.
The regarded systems are governed by two dynamic processes: the height fluctuations of the membrane and the
diffusion of the inclusion along the membrane. While membrane fluctuations can be expressed in terms of a
dynamic equation which follows from the Helfrich Hamiltonian, the dynamics of the diffusing particle is
described by a Langevin or Smoluchowski equation. In the latter equations, the curvature of the surface needs
to be accounted for, which makes particle diffusion a function of membrane fluctuations. In our scheme these
coupled dynamic equations, the membrane equation and the Langevin equation for the particle, are numerically
integrated to simulate diffusion in a membrane. The simulations are used to study the ratio of the diffusion
coefficient projected on a flat plane and the intramembrane diffusion coefficient for the case of free diffusion.
We compare our results with recent analytical results that employ a preaveraging approximation and analyze
the validity of this approximation. A detailed simulation study of the relevant correlation functions reveals a

surprisingly large range where the approximation is applicable.

DOLI: 10.1103/PhysRevE.75.011908

I. INTRODUCTION

During the last decade it has become apparent that lateral
diffusion of various components of the cell along the mem-
brane is crucial for several cellular processes, like exo- and
endocytosis, cell signaling, or cell movement. To study all
these different aspects of lateral diffusion in more detail a
whole variety of experimental methods has been developed,
including fluorescence recovery after photobleaching
(FRAP) [1,2], single particle tracking (SPT) [3], fluorescence
correlation spectroscopy (FCS) [4], or pulsed field gradient
nuclear magnetic resonance (pfg-NMR) [5]. While the accu-
racy of measured diffusion coefficients achieved with these
experimental methods can be very high [6], the interpretation
of the results is often very difficult. It is, therefore, likely that
theoretical calculations and simulations in particular will
play a key role in developing a better understanding of
diffusive processes in biological membranes.

In order to correctly interpret experimental results it is
necessary to analyze what information of the system in
which diffusion takes place is documented but also what is
neglected or insufficiently regarded during the measurement.
Lateral diffusion of proteins in a membrane must not be
viewed as diffusion on a flat surface: due to the flexibility of
biological membranes lateral diffusion always takes place on
curved surfaces, whereby the shape of this surface may also
be time dependent. This is an important aspect that needs to
be taken into account in the experimental data analysis.
However, this turns out to be rather difficult, because not
always information on the membrane shape can be acquired.
So far several theoretical studies of free diffusion on tempo-
rally fixed curved surfaces have been undertaken. One of the
first studies of this kind was performed by Aizenbud
and Gershon [7] who numerically solved the Smoluchowski
equation of free diffusion on a periodic surface. In later

*Electronic address: reister @theo2.physik.uni-stuttgart.de

1539-3755/2007/75(1)/011908(11)

011908-1

PACS number(s): 87.16.Dg, 87.15.Vv, 87.16.Ac, 05.40.—a

studies that include both sophisticated numerical and analyti-
cal calculations diffusion on more complicated surfaces is
regarded [8-12]. Recently Schwartz er al. [13] and
Sbalzarini et al. [14] simulated free diffusion on surfaces
reconstructed from experimental image data. In the latter
work, that analyses diffusion in the endoplasmic reticulum
(ER), experimental FRAP curves are compared with simula-
tion results. Good agreement is found, however, the authors
point out that the evaluation of the FRAP curves assuming
the membrane to be flat leads to diffusion coefficients that
differ by a factor of about 2 from the actual intramembrane
diffusion coefficient. Furthermore, the experimentally deter-
mined diffusion coefficient appears anisotropic while real
diffusion along the ER is purely isotropic.

These studies clearly show that the curvature of mem-
branes may not be neglected during the evaluation of experi-
mental data. But even if the shape of the membrane within
the measurement volume appears flat on average, the actual
shape fluctuates due to thermal activation. These membrane
fluctuations have been thoroughly studied. While the fluctua-
tion spectrum of a free and almost flat membrane is easily
calculated [15,16], the influence of various geometric con-
finements of the membrane have also been regarded. These
include the attachment of the membrane to a reference plane
via a regular mesh of harmonic springs [17-19] which re-
sembles a model for the attachment of the cell membrane to
the cytoskeleton, a membrane that is close to a flat non-
impenetrable surface [20], or the inclusion of active proteins
in the membrane, that exert an out-of-plane force on the
membrane [21]. Lin and Brown introduced a very powerful
method to simulate membrane fluctuations [17,18,22], the
Fourier space Brownian dynamics algorithm, that allows to
add a whole variety of external influences on the membrane.
Part of the simulation algorithm introduced in this paper is
closely related to this method.

Returning to the movement of proteins along the mem-
brane, it is obvious that membrane fluctuations will influence
the measured value of diffusion coefficients. This was first
pointed out by Gustafsson and Halle [23,24]. But, although
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their work is almost 10 years old, experimentally diffusion
coefficients are still determined by use of the projected flat
path particles perform instead of the real path along the
membrane. Only recently the quantitative influence of ne-
glecting thermal membrane fluctuations on the measured dif-
fusion coefficients has been estimated both by us and Gov
[25,26]. However, these calculations make use of a preaver-
aging approximation, that a priori implies that the time it
takes a diffusing particle on average to diffuse the length &
should be much smaller than the correlation time of a mem-
brane fluctuation mode with wave number 27r/£. In this pa-
per we introduce a new algorithm that does not depend on
this kind of approximation, because the diffusive motion of a
protein along a fluctuating membrane is simulated explicitly.
Clearly, the system dynamics is described by two coupled
processes: the fluctuations of the membrane and the diffusion
of the particle. The simulation of membrane fluctuations is
effectively regarded by numerically integrating the equation
of motion for a membrane given in the Monge gauge, dis-
cretely in time. At each discrete timestep we also update the
position of the diffusing particle. To this end the discrete
version of the Langevin equation valid for the particle move-
ment is used. Special care needs to be taken regarding this
Langevin equation because the movement of the particle
depends on the actual shape of the membrane.

As a first test we analyze the height-height correlation
function of membrane fluctuations, and compare the simula-
tion results with the analytical result. As mentioned above
we have previously calculated the ratio of the measured, or
projected, and the intramembrane diffusion coefficient as a
function of membrane parameters within a preaveraging
approximation.

Using our simulation scheme that does not rely on this
kind of approximation we determine the same ratio of diffu-
sion coefficients by analyzing the mean square displacement
of diffusing particles. We compare the simulation results
with the analytical results and finally discuss the applicabil-
ity of the preaveraging approximation for situations when
diffusive time scales are comparable or smaller than typical
membrane time scales by analyzing relevant correlation
functions.

The paper is organized as follows: While we introduce the
dynamics of membranes in the next section, we explain dif-
fusion on a curved surface in Sec. III. Generally diffusion
can either be expressed by a Fokker-Planck equation that
gives the dynamics of the probability of finding a particle at
a certain time and position, or a Langevin equation that cor-
responds to the equation of motion of the particle position. In
Secs. IIT A and III B the Smoluchowski equation, a particular
form of the Fokker-Planck equation, and the Langevin equa-
tion for diffusion on a curved surface expressed in the
Monge gauge are described, respectively. Since simulation
results are compared with previous calculations we briefly
explain these in Sec. IV. After establishing the theoretical
foundations necessary for this study we describe our simula-
tion scheme in Sec. V with which the results in Sec. VI are
achieved. In the result section we first analyze pure mem-
brane fluctuations and then determine the ratio of projected
and intramembrane diffusion as a function of the membrane
parameters bending rigidity and effective surface and as a
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function of the intramembrane diffusion coefficient. After the
comparison of simulation results with analytical calculations
we estimate the limits of the preaveraging approximation in
Sec. VI C. The paper finishes with some conclusions and an
outlook for future work.

II. DYNAMICAL MEMBRANE FLUCTUATIONS

The shape of a membrane without spontaneous curvature,
i.e., a membrane that is on average flat and without over-
hangs, is conveniently described in the Monge gauge.
Hereby a position r* of the membrane is given by r*
=(x,y,h(x,y)). In the following the vector r=(x,y) denotes
the projected position in the (x,y) plane. The height function
h(r) is the distance between the membrane and the flat (x,y)
plane. The energy of a membrane with bending rigidity «
and effective surface tension o is given by

)= | dzr(g[vzmr)]z + g[vmw) +H,[h(r).R]
A

(1)

in the Monge gauge [16,27-29]. The projected area of the
membrane is given by A. A possible energy contribution
‘H,[h(r),R] is caused by the inserted protein at position R
=(X,Y) and may also depend on the membrane shape. In the
following we assume that the system’s energy does not de-
pend on the position of the particle and will therefore drop
this additional energy term. The dynamics of the membrane
is given by the equation of motion for the height function
h(r). Because h(r) is not a conserved order parameter the
following dynamics applies [16,17,22]:

oh(r,) , , 5H[h(r’,t)])
— ——L d*r (A(r—r) e 1) + &(r,1)

=J d*r'{A(r —x")[«kV*h(x' 1) — oV?h(r',0)]}
A

+&(r.1), (2)

where A(r—r') is an Onsager coefficient and &(r,¢) is a fluc-
tuating force that obeys the fluctuation-dissipation theorem,

(&(r,1))=0, (3)
(&(r.0&(r',1')) = 2kgTAA(r —x') Sz = 1'). (4)
Applying the following Fourier transform,
h(k,t) = f d’rh(r,1)e”*T, (5)
A
1 .
h(r,n) = 2 h(k,ne", (6)
A%
the equation of motion for the membrane becomes
oh(k,t
% =— A(K)(kk* + ok*)h(k,1) + &k, 1), (7)

with
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(&(k,1) =0, (8)

(€(k,0) (k" 1")) = 2kgTAN(K) & /St —1"). )

Both the height function A(r,¢) and the random force &(r,¢)
are real quantities. Therefore, the relation 4" (k,t)=h(-k,1)
applies (for &, respectively); the asterisk resembles the com-
plex conjugate.

The Onsager coefficient for an almost planar membrane
can be derived from the Oseen tensor and takes the following
form in Fourier space [15,16,30]:

A<k>=4%7k, (10)

with viscosity # of the fluid surrounding the membrane.
Due to the linearity of Eq. (7) the height-height correla-

tion function (h(k,r)h(k’,7')), that describes the shape

fluctuations of a membrane is easily calculated [16]

Kk® + ok
——lr=1'|
47

ksTA 5.
k4 o2 BTk

(11)

(&, )Rk’ ,1')) = exp(—

III. DIFFUSION ON CURVED SURFACES

When describing the dynamics of a particle free to diffuse
laterally along the membrane one must bear in mind that the
membrane is not flat but curved. The dynamics of the par-
ticle is adequately expressed either by a Smoluchowski equa-
tion that describes the time evolution of the probability of
finding the particle at a certain position, or by a Langevin
equation that represents the equation of motion of the par-
ticle position. In the following two sections both dynamic
equations appropriate for a protein diffusing freely on a
curved membrane the shape of which is given in the Monge
gauge, will be introduced.

A. Smoluchowski equation

In Cartesian coordinates the Smoluchowski equation for a
particle diffusing freely and isotropically on a flat
(x,y)-plane is given by

dP' (x,y,1)

=DAP'(x,y,1), 12
Py (x,y,1) (12)

with the diffusion coefficient D and the probability
P’(x,y,t)dxdy of finding the particle in the area element
dxdy at position (x,y). The probability is normalized
such that [4dxdyP’(x,y,)=1 applies. On a curved surface
the Laplace operator A needs to be replaced by the Laplace-
Beltrami operator, which is a function of the metric of
the surface g and the inverse metric tensor g” [7,31]. The
resulting Smoluchowski equation takes the form

IP(x,y,1) 1 g
— :DE —raiv'ggljajp(x,y,t). (13)
ot i \r’g :

The summations are to be taken over x and y. In the Monge
gauge the metric of the surface is given by
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g=1+h+h, (14)

with h,=d,h(x,y), for other subscripts accordingly, and the
inverse metric tensor by

I.j_l(1+h§ —hxhy> s
8 e\ cnn, 14n2)

The probability P(x,y,?) in Eq. (13) is normalized such that
[ ,dxdy\gP(x,y,1)=1 is valid. Assuming that in experiments
typically the path of a particle projected on the flat (x,y)
plane is regarded, it makes more sense to evaluate the prob-
ability P(x, y,t)E\L—P(x,y,t) for which the normalization
JadxdyP(x,y,t)=1 applies. To compare results that neglect
the curvature of the membrane with those that take it into
account correctly, the differences between P’(x,y,r) and
P(x,y,t) need to be analyzed. The Smoluchowski equation
for P(x,y,t) is

dP(x,y,1) T
EoERE DY g o —P(x,y1). (16)
ot ij Vg

The probability of finding the projected position of a particle
within the area element dxdy around position (x,y) is now
given by P(x,y,r)dxdy.

B. Langevin equation

To simulate the movement of a particle in a membrane it
is more convenient to use a Langevin equation which de-
scribes diffusion on a curved surface. In general it is possible
that several different Langevin equations produce the same
dynamics of the probability distribution P(x,y,). In the fol-
lowing we will develop a realization of a Langevin equations
in the Ito calculus that leads to the dynamics of Eq. (16).
Within the Monge description the Langevin equation we
wish to develop is ideally the equation of motion of the
projected position R of the particle. The actual particle posi-
tion is then given by the vector (X,Y,h(X,Y,7)). The general
form of the Langevin equation in Cartesian coordinates is
[32]

IR,

where Db; is the drift term that resembles an external force

acting on the particle, and G;I'; is a stochastic force with

(Ci(1)=0, (18)

(LT (1)) =25,6t-1"). (19)

For the curved system we will develop Langevin equations
that obey the form of Eq. (17) but where the information on
the shape of the surface is incorporated into the drift term b;
and the strength G;; of the stochastic force.

The most general form of a Fokker-Planck equation in
two-dimensional Cartesian space is given by [32]
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JP(x,y,t

% (=DM + 3.3,DD) Py, (20)
with the drift vector Dl(.l) and the diffusive tensor Dl(.?). Com-
paring this equation with Eq. (16) we can identify

1 .
DV = D—=[d,(Vgg"], (21)
Vg

DY =Dg". (22)

Note that the partial derivative in Eq. (21) is not applied to
P(x,y,t). If we derive the Langevin equations within the Ito
calculus the following relationships between the parameters
D" and D? of the Fokker-Planck equation (20) and the drift
term Db; and the strength G;; of the stochastic force of Eq.
(17) need to be fulfilled [31,32]:

G (D(2)1/2) ( (2)1/2) (23)

Ji»

Db;=Dj". (24)

Using these relations and the identifications from Egs. (21)
and (22) we arrive at the following Langevin equation:

aX(1
55) =D 2[2h2h By = hoho (14 1) = hohy, (1+R3)]
1 (R 1
+ y5—< = +h2>F + \’D—h h ( 1)1“),,
g—1\\g g-1 Vg
(25)
‘QY(t) 2 2 2
P 2[2hh By = hyho (1 + B3) = hyhy, (14 13)]

—= 1 1 1 (K,
+\D——hph| =11, +\D—| 2 +12|T,.
g—1 7 "\\g g-1\\g

(26)

Surprisingly, these equations comprise a drift term that is
induced by the curvature of the membrane and does not ap-
pear in the Langevin equations for free diffusion on a flat
plane.

IV. FREE DIFFUSION WITHIN THE PREAVERAGING
APPROXIMATION

Before we turn to the simulation scheme we will give a
short introduction to our previous analytical calculations [25]
with which we determine the measured, or projected, diffu-
sion coefficient of a protein diffusing freely in a membrane.

The solution of the Smoluchowski equation (16) that de-
scribes the time evolution of the probability distribution of
the projected position of the diffusing particle, is nontrivial
because the prefactors containing the metric and the inverse
metric tensor are time dependent. If the time 7 it takes a
particle to diffuse the length & is much longer than the char-
acteristic time Tyemp, ¢ Of membrane fluctuations with wave-
length ¢ we may apply a preaveraging approximation, i.e.,
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we may replace the time-dependent prefactors in Eq. (16)
that contain partial derivatives of A(r,7) by their thermal av-
erages. The membrane time scale is given by the correlation
time in Eq. (11) as Tyemb ¢= 7&/(27 k), while the diffusive
time scale is simply given as 7= &/4D. Comparing these
time scales reveals that as long as lengths with

E< mKl(2D7) (27)

are regarded the preaveraging approximation should be
valid.

When we average over the prefactors of Eq. (16) we find
that most terms vanish and the Smoluchowski equation sim-
plifies considerably. Taking into account only leading order
prefactors it reads

IP(x,y,1) B D<< 1+ h3> FPP(x,y,1)

at g ax*
1+h2\ #P(x,y,t
x (xzy ) _ (28)
8 dy

In an isotropic membrane the two remaining thermal aver-
ages are both equal and therefore the Smoluchowski equa-
tion takes the form applicable for diffusion on a flat surface,
cf. (12), but now with a new diffusion coefficient D,;. The
ratio of Dy; that would be measured in experiments, and the
actual intramembrane coefficient D is given by

2@1=1<1+<1>>. (29)
D 2 g

By use of the relation 1/g=[jda exp(—ag) and the Helfrich
Hamiltonian (1) this ratio becomes

Dyoi 1 1(7 1
—m=—+—J daexp| - = E ln< 22—) .
D 2 2), ,8L Kk + o
lk\<qm
(30)

A cutoff wave number ¢,,~a needs to be introduced that is
proportional to the inverse of the microscopic length scale a
in the system. As we will see later, in the simulations this
microscopic length scale corresponds to the lattice spacing.
For a more detailed discussion of the numerical evaluation
and the results of this equation we refer the reader to our
previous work [25].

Instead of regarding the preaveraging approximation in
the Smoluchowski equation it may also be applied in the
Langevin equations (25) and (26). The averaging process
leads to a vanishing drift term; the calculation of the mean
square displacement and the subsequent derivation of the
effective  diffusion coefficient leads to Dy/D= (G2
+G§y>/2D=(l +(1/g))/2. This is the same result as Eq. (29).

V. SIMULATION SCHEME

The analytical calculations in the preceding section were
performed within a preaveraging approximation. In the
present work we do not apply this approximation, but rather
simulate the equation of motion for the membrane (2) and
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the Langevin equations (25) and (26) for the protein move-
ment. The simulation scheme that we will introduce during
the next paragraphs resembles the effective evaluation of this
coupled set of dynamic equations by means of discrete
numerical integration in time.

First let us turn to the numerical evaluation of the time
evolution of the membrane shape. If we regard Eq. (7) and
assume periodic boundary conditions it is obvious that the
numerical integration is most effectively implemented in
Fourier space because the evolution of the height function
modes h(k,?) takes place independently of each other. If the
diffusion of the protein were not taken into account the
whole time evolution of the membrane shape could be per-
formed in k space. However, the real space representation
h(r,t) becomes necessary to develop the position of the pro-
tein. Due to the periodic boundary conditions k vectors are
of the form k=2(l,m)/L with A=L?. Because in real space
h(r,r) is expressed on a quadratic lattice of N XN lattice
sites the restriction —N/2<<I,m=<N/2 applies. The lattice
spacing a is given by a=L/N.

When numerically implementing Eq. (7) one must re-
member that i(k,7) may be a complex number with a real
part h.(k,t) and an imaginary part h,(k,7) such that h(k,?)
=h,(k,t)+ih,(k,?). Both for the real and the imaginary part
an equation of motion is necessary. The numerical equations
that are used in the simulations to develop the membrane
shape during a timestep At are of the form

1
h, (K1) = h,(k,t — Af) + Atﬂ(xk“ + ok?)h,;(k,t — Af)
7

+ \NkpTAA/ (4 7). (31)

The random number 7 is Gaussian and therefore (r)=0 and
(r?)=1 applies. The factor \ in the random term is either 1 or
2 as we will now explain: Due to i(r,7) and &(r, 1) being real
quantities not all modes have an imaginary part. In particular
modes with wave vectors k=2m(/,m)/L with (I,m)
=(0,0),(0,N/2),(N/2,0),(N/2,N/2) are purely real, while
all others are complex. In order to fulfill the fluctuation dis-
sipation theorem from Eq. (9) the four purely real modes
only have an equation of motion for the real part with A=2,
while all other independent modes have two equations of
motion, one for the real and one for the imaginary part, each
with N=1. The real and the imaginary part of &(k,t) are
assumed not to be correlated. Note that not all modes are
independent, because A(r,?) is a real function. Only a set of
independent modes is updated via (31), while the dependent
modes are set such that h(k,r)=h"(-k,1).

Regarding the random term in Eq. (31) it becomes evident
that it diverges for k=0 due to the Onsager coefficient A (k).
The mode h(k=0,7) is a measure for the distance between
the center of mass of the membrane and the flat (x,y) plane.
Therefore, fluctuations of i(k=0,7) just describe a move-
ment of the membrane as a whole. Such movement of the
center of mass is of no relevance for the membrane and
diffusive properties of interest in this work, so we keep
h(k=0,7)=0 fixed at all times.

So far the simulation scheme is rather similar to the Fou-
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rier space Brownian dynamics method introduced earlier by
Lin and Brown [17,18,22]. But in our simulations we addi-
tionally take into account the diffusion of a freely diffusing
particle along the curved surface given by the membrane
shape. After an update in the membrane shape using Egs.
(31) we will now update the position of the diffusing particle
by using a discrete version of Egs. (25) and (26) [31,32],

1
X(t+ At) = X(1) + D—[2h3h k= hoh (1 + ) = By,
s :

— 1 (R
X(1+h2)]Ar + \’D—1<% + hf) V2Atr,

g-1\\g
= 1 1 e
+\D——hh | =~ 1 |\N2Atr,. (32)
g-1 Vg ’

For Y(¢) the corresponding equation is valid. Hereby we use
h(R(¢),1), for all other partial derivatives of & accordingly,
at the position of the particle R(¢) at time ¢. The random
numbers r, and r, are again Gaussian with (r;)=0 and
(rir;)=08,;. This equation clearly describes an off-lattice
movement of the particle. It is also conceivable to simulate
the protein movement through a random walk on the lattice
used for the membrane. In such a scheme we would check
the probability of a particle moving to a neighboring lattice
site within a timestep Ar and then decide whether the particle
is to hop. In biological systems, however, the time it takes a
particle to diffuse the length of a lattice spacing a in the
simulation is much larger than the typical time scale of mem-
brane fluctuations with wavelength a. This would typically
lead to significant changes in the membrane shape before a
particle jump is successful. Therefore, the off-lattice version
of the particle’s random walk is much more favorable, al-
though the partial derivatives of i need to be extrapolated to
the position of the particle. This is realized by the following
procedure: Multiplying h(Kk,)with the appropriate k vectors
and subsequently performing the Fourier backtransform, we
arrive at the first and second partial derivatives of a(r, ) with
respect to x and y. All discrete Fourier transformations nec-
essary for the simulations are effectively implemented using
the FFTW routines [33]. Assume that the protein is to be
found somewhere between the four lattice sites (i,)),
(i+1,)), (i,j+1), and (i+1,j+1), with 0<i,j<N-1. The
quantity A(R) to be extrapolated to the particle position is
given at the lattice sites by A(i,j), A(i+1,)), etc. The dis-
tance between the particle and the line connecting (i,/) and
(i,j+1) is to be ua and the distance between particle and the
line connecting (i,;) and (i+1,/) is va. The linearly extrapo-
lated value of A at the particle position R=(a(i+u),a(j
+v)) is calculated by use of

AR) =A(i,j) — valA(i,j) —A(i,j + 1)] = nalA(,j) — A
+ 1))+ uva®[AG,)) —AG+1,) + A+ 1,5+ 1)
—A@,j+1)]. (33)

After all the necessary quantities have been determined at
position R the new particle position is calculated with Eq.
(32). During the timestep of course also the shape of the
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membrane will change. This is accounted for by employing
Eq. (31) in the next computational step to get h(k,z+Ar).
Then we again update the particle position and so on. Re-
peating the two step process of membrane shape update and
particle movement makes out our simulation scheme.

Instead of simulating the diffusion of one particle in one
membrane it is possible to insert several particles into the
membrane that do not interact with each other. For each par-
ticle a separate Langevin equation needs to be evaluated, but
only one membrane equation of motion. Since the Fourier
transform of the membrane configuration is the most time
consuming element of the code, the insertion of more than
one particle saves computing time. However, the average
distance between the particles should be sufficiently large in
order for the particle paths to be independent. Results pre-
sented in Secs. VI B and VI C follow from averaging over
2500 paths in 100 different membranes. In each independent
membrane 25 particles, that do not interact with each other,
are allowed to diffuse.

All simulation results presented in this paper were per-
formed on a 50X 50 lattice. If we assume (arbitrarily) that
the lattice spacing a corresponds to 10 nm the system size is
L=0.5 pum. The viscosity 7 of the water surrounding the
membrane is 7=10"" J s/cm®. With the above chosen lattice
spacing a and the temperature 7=300 K, the viscosity used
in the Onsager coefficient of the simulations is #n=2.4
X 10" 7kgTs/a>.

The choice of the appropriate timestep Az is determined
by two time scales, namely the smallest time scale of mem-
brane fluctuations 7y,emp min and the time 7y, it takes a par-
ticle on average to diffuse a lattice spacing a. Only if At is
significantly smaller than 7.,y min then the evolution of the
membrane shape will be numerically stable. The membrane
time scale is given by Toemb.min=4 7/ (KK + Thmay)s cf. Eq.
(11). The maximum wave number k. = \27/a is deter-
mined by the minimal microscopic length scale of the sys-
tem, i.e., in simulations the lattice spacing a. Additionally the
average length a particle moves during Af needs to be much
shorter than a, because we regard the membrane shape only
right at the beginning of the jump. If the jump is too big, the
actual particle path along the membrane is not taken into
account with the necessary accuracy. The diffusive time scale
is determined by Tdiff’a=a2/ 4D. To perform the simulations
At should be considerably smaller than both 7emp min and
Taitt.o- Timesteps At used in the presented simulations range
from 5X 10710 s to 2 X 107 s. Typical simulation runs com-
prise ~2X 10° timesteps which took approximately 30-35
minutes on a 64 node Beowulf cluster with Pentium IV,
3.2 GHz processors.

VI. RESULTS
A. Validation of membrane fluctuations

After developing a simulation code it is always necessary
to test it by comparing its results with results previously
obtained with another method. In this section we will show
that the evolution of the membrane shape results in the mem-
brane fluctuations given by Eq. (11) that follow analytically
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<151 |— analytical &
=

k [units of 1/a]

FIG. 1. Height-height correlation function {i(k)h*(k)) as a
function of wave number & (in units of 1/a). To illustrate the agree-
ment between the analytical and the simulation result for larger k
values, we plot k2/(h(k)h"(k)) as a function of k? in the inset. The
simulation results, symbolized by the diamond symbols, were ob-
tained by averaging over 250 independent membrane configurations
created during runs with dimensionless physical parameters Sx=5
and BoL?>=500 on a 50X 50 lattice. The numerical timestep was
Ar=1.7x107105.

for a membrane with the Helfrich energy (1) and the Onsager
coefficient of Eq. (10).

In Fig. 1 we display the equal time correlation function
(h2(k,1)+h?(k,7)) as a function of k=|k| for Bx=5 and
BoL?=500. This corresponds to a surface tension on the or-
der of 8 X 107 mJ/m?. Typical values for the dimensionless
bending rigidity Bk of lipid bilayer membranes are between
1 and 50.

If we compare the simulation results with the analytical
result that is given by the solid line we see a good agreement
for small wave numbers. For higher k values it is more
convenient to plot k?/ (hz(k,t)+hi2(k,t)> as a function of
k%, which is done in the inset. The linear behavior expected
from the analytical calculations is well reproduced by the
simulations.

In order to test the time correlations of the membrane
fluctuations we plot the correlation function {i(k,z)h"(k,0))
as a function of the dimensionless time #/ 7. (k) for several
randomly chosen wave numbers in Fig. 2. The same
parameters as in Fig. 1 were used. The exponential fits
ocexp(—t/ Tyemp) to the simulation results reveal a good
agreement between the analytical correlation times and the
results obtained from our numerical membrane update
scheme.

B. Free membrane-bound diffusion

In the preceding section we showed that our simulation
scheme reproduces membrane fluctuations correctly. In
this section we show that it is also capable of adequately
describing the diffusion of a protein in the membrane.

To determine the projected diffusion coefficient in the
simulations we use the relation ([R(t)—R(O)]2)=4mejt. The
mean square displacement (AR*(7))=([R(r)—R(0)]*) as a
function of time is determined from the simulations by aver-
aging over a large number of independent particle paths. In
Fig. 3 we show (AR?(1))/4D as a function of time for the
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FIG. 2. Time correlation function (h(k,7)h"(k,0)) as a function
of the dimensionless time #/ Tyemp(k) for the given values of k. The
correlation time Ty (k) =4 5/ (kk>+ ok) is given by Eq. (11). Sym-
bols are results from the simulations, while straight lines resemble
fits o exp(—1/ Temp)-

given values of Bk and o=0. The chosen intramembrane
diffusion coefficient is D=10%¢%/s; this corresponds to an
experimental value of D=10"" cm?/s. The results evidently
show a linear increase of (AR?(¢)) with time. Furthermore,
the comparison of the simulation results with the line that
gives the expected mean square displacement if the mem-
brane were flat displays that the projected diffusion coeffi-
cient is smaller than the actual intramembrane diffusion co-
efficient. This is of course expected and also seen in the
result of Eq. (29), because membrane fluctuations increase
the actual path of the protein.

The slope of the linear fit to the simulation results some of
which are displayed in Fig. 3 corresponds to the ratio
Dyroi/ D. In Fig. 4 we plot D/ D resulting from the simu-
lations and the numerical evaluation of the integral in Eq.
(30) as a function of bending rigidity B« both for vanishing
tension and BoL?=500. Both simulations and preaveraging
calculations show that for small bending rigidity and small
tension the difference between projected and actual diffusion
coefficient becomes more and more pronounced. This result
is plausible: decreasing tension o and bending rigidity «
leads to stronger membrane fluctuations. The difference be-

0.003
F | — - Flat: (AR®/4D=t
) Br=1
5 Pr=2
@ 0.002F |, . px=6
=) o
S 3
o o
c 3
< 0.001F >,
o
] - SR | I ET ST A A A | IS Er A A A
0 0.001 0.002 0.003

FIG. 3. (Color online) Elucidation how D, is determined from
simulation results (symbols): the averaged mean square displace-
ment (AR*(1))/4D is plotted as a function of time. The error bars
correspond to the standard error of averaging. The slopes of linear
fits (solid lines) to these results determine the diffusion coefficient.
The projected diffusion coefficient on a fluctuating membrane is
always smaller than on a flat plane (thick dashed line).
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FIG. 4. Comparison of simulation and analytical results for
Dproi/ D as a function of bending rigidity B« for the two given
effective tensions. Good agreement is observed.

tween actual and projected particle path becomes bigger and
therefore the fluctuation effect is enhanced. If the system size
is increased, not shown here, this also leads to an increase in
fluctuation strength. The comparison of simulation and
analytical results displays a very good overall agreement.
Results in Fig. 4 were achieved for a single diffusion co-
efficient D. To study the influence of the intramembrane dif-
fusion coefficient we also perform simulations for five dif-
ferent coefficients D=10% 10°, 10° 5x10° 107¢3/s, and
0=0. In Fig. 5 we display the ratio D,/ D as a function of
Bk for all used D as derived from the average mean square
displacement (AR?(¢)) of the diffusing particles. The results
show that D,/ D is seemingly independent of the diffusion
coefficient D: for all values of D a good agreement of the
simulation results is observed. Comparing the simulation re-
sults with the analytical result invoking the preaveraging ap-
proximation we also find that the agreement is very good.
But this is rather surprising: a priori the preaveraging ap-
proximation should only be applicable if the time it takes a
particle to diffuse the length & is much larger than the corre-
lation time of membrane fluctuations with wavelength &.
This is expressed in Eq. (27) where we have a crossover
length scale &,,=m /(2D %) =6X 10’ Bx/D. If diffusion on
length scales below &, is analyzed the preaveraging approxi-
mation should lead to good agreement, while one would ex-
pect to see a change for larger length scales. For the smallest

—

SHR B o o e e e B
E c=0
0.95F
o E -
= F @—@ preaveragin
7 09F . o e
a2 E D=10
- 5
E B D=10
3 < p=10°
0.85F
: A p=5x10°
E < p=10’
E . | P P PR N T
0'80 1 2 3 4 5 6 7 8 9 10
Bx

FIG. 5. (Color online) Ratio of the projected to the intramem-
brane diffusion coefficient Dy,;/D as a function of B« for various
diffusion coefficients (given in units of a?>/s) and o=0. Simulation
results for all D cannot be distinguished from the preaveraging
result.
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regarded diffusion coefficients &, is on the order of 10%a.
With a system length of L=50a all lengths in the system are
below the crossover length scale and therefore the agreement
of the simulation results with the preaveraging result, as seen
in Figs. 4 and 35, is expected. For the largest regarded D the
crossover length is on the order of 10a. Thus there are very
many membrane fluctuation modes in the system with wave-
lengths larger than &_,. In this case we would have expected
the interplay of membrane and diffusive time scales to be
observable in the effective diffusion coefficient. However,
Fig. 5 shows that this is not the case. To understand why the
preaveraging approximation leads to good agreement with
explicit simulations even for large D, it is necessary to study
the correlations of the drift term in the Langevin equations
(25) and (26) that is caused by the metric of the system. This
is the subject of the following section where we discuss the
validity of the preaveraging approximation.

C. Validity of the preaveraging approximation

The last section had the unexpected outcome that the ana-
lytical calculation within the preaveraging approximation de-
scribes particle diffusion well even when the diffusion coef-
ficient is so large that one would assume this approximation
to break down. In this section we study in more detail the
validity of the preaveraging approximation.

To this end it is helpful to regard the Langevin equations
(25) and (26) governing particle diffusion. The diffusion co-
efficient is defined through the mean square displacement of
the diffusing particle. Using Eq. (17) we can formally write
the mean square displacement as

(AR*(1)) = sz de dr’ (E (bi(R(7); Db(R(7'); T’)))
0 0 i

+ 22 (GHr. (34)

The last term that is linear in time ¢ coincides with the preav-
eraging result, because <Gix+ G$y>/2D:(1 +(1/g))12, see
Eq. (29). Hence the diffusion coefficient derived through
(AR?(1))/4t gets an additional term caused by the correla-
tions of the drift term. If we are interested in the ratio of the
projected and the actual diffusion coefficient it may be writ-
ten as the sum of two terms Dpyoi/ D=Dproi preav/ D
+ Do ariee/ D> with the additional contribution

Poojasn _ 1, f dr f " H B R(): AT LAR(); 7))
D 2t Jo 0
+ (b, [HR(D: )b, [HR(#): )} (35)

with

1
b[h]= g—z[zhﬁh},hw = heho (1 + 1) = by, (1+h)],
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FIG. 6. (Color online) Correlation
(bR(7); b (R(T+AT); T+A7T)) (solid symbols) and
(by(R(7); Dby (R(7+A7); 7+ A7) (White symbols) as a function of
A7 for Bk=1 (top panel) and Bxk=2 (bottom panel). Different sym-
bols apply for different diffusion coefficients (given in units of
a*/s). The insets display the same results as double logarithmic
plots.

(1+h3) = hoh o (1+ 1))

1 2
b[h] = g—z[zhyhxhxy — hyhy,

(36)

In order to estimate this contribution we calculate
the  functions (b (R(7); Db (R(7+A7);7+A7)) and
(by(R(7); Dby(R(7+A7);7+A7)) from our simulation
data for the five previously regarded diffusion coefficients.
Note that the correlations do not only depend on the pure
time interval |7—7'| but also on the distance |R(7)-R(7’)|
the particle travels during this time interval. The correlation
functions are displayed in the top and bottom panels of
Fig. 6 as a function of A7 for Bk=1 and Bk=2. In this
whole section we set the effective surface tension o=0.
We find that the correlation function is overall smaller for
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D=10’ .
(byby); D=10
D=10°
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D=10 k.

fit:~exp[-(4DAt) /C]

(b(R(1);T)b(R(T+AT);T+AT))

DAz [units of a2]

FIG. 7. (Color online) Correlation functions
(bR(7); b (R(T+A7); T+ A7) (solid symbols) and
(by(R(7); Dby(R(7+A7); 7+A7)) (White symbols) as a function of
DA7 and A7 (inset) resulting from diffusion on 100 different
quenched membranes with 25 particles each for Sx=1. Different
symbols apply for different diffusion coefficients.

larger Bk as is expected. This means that the larger the
bending rigidity « or the effective tension o, not shown
here, the less important is the contribution caused by the
drift term. The expectation for an isotropic system that the
correlation functions (b (R(7);7)b (R(7+A7);7+A7)) and
(by(R(7): Dby(R(7+A7); 7+A 7)) coincide, is also fulfilled.
Furthermore, a faster decrease of the correlation function
with increasing diffusion coefficient D is observed. The de-
crease of the correlation function with time A7 is determined
by two processes: the change in membrane shape and the
movement of the particle along the membrane. If the particle
did not diffuse, i.e., D=0, the displayed correlation functions
would still decrease with increasing the time interval due to
the evolution of the membrane shape. This contribution to
the decrease obviously does not depend on how fast the par-
ticle diffuses within the membrane, but only depends on
membrane parameters like bending rigidity « or surface ten-
sion o. In the other extreme when membrane time scales
Tmemb approach infinity, and the particle diffuses on a fixed
membrane shape, the decrease of the correlation function is
determined by the distance a particle travels during a fixed
time interval. This is shown in Fig. 7 for Bk=1, where we
display the correlation functions (b{R(7);Nb(R(7+A7);7
+A7)) for particles diffusing on different quenched mem-
branes over which we average afterwards. The “quenched”
configurations used in the simulations are obtained by evolv-
ing the membrane shape for such a long time that thermal
equilibrium has been reached. Regarding the correlation
functions as a function of time we see that the smaller
the diffusion coefficient the slower the decrease of the
correlations. Multiplying A7 with the diffusion coefficient
leads to a perfect match of all four lines. This is a clear
indication that the correlation function depends only on the
average distance v4DAT a particle travels during a certain
time. The thick solid line is the result of an exponential fit

PHYSICAL REVIEW E 75, 011908 (2007)

@

)
[

-4 D=5x10°
“4 =10
— linear fit

AP omO
P8
o
n
LK
o

I
I

N

D [ 'de, dv(b(R(0):)-b(R(x);v))/4 x 10°

t[10°]

FIG. 8. (Color online) Additional mean square displacement
(ARiriﬁ(t))/élD as a function of time ¢ for Bxk=1 as derived by
numerically evaluating the first term of Eq. (34).

xexp(—v4DA7/{); the correlation length for Bxk=1 is given
by {=1.0a.

If we return to Fig. 6 where both the membrane and
the particle are moving, it is now understandable that an
increasing diffusion coefficient leads to a faster decrease of
the correlation functions. An analytic form for the observed
correlation functions could not be found.

In order to estimate the additional contribution to the pro-
jected diffusion coefficient the correlation functions need to
be integrated according to Eq. (34). Regarding the results in
Fig. 6 it is obvious that the double integration of the corre-
lation functions (b (R(7); 7)b(R(7+A7); 7+A7)) in time will
cause a slower increase with time for large D. However, the
additional contribution Dy 4/ D is given by multiplying
this integral by D. The additional mean square displacement
(ARJ(1))/4D resulting from the numerical integration of
the results in Fig. 6 is displayed in Fig. 8 for Sx=1. For all
regarded diffusion coefficients we find a linear behavior for
large times ¢. Furthermore, the slope becomes larger for in-
creasing D. In other words, the influence of the drift term
becomes more pronounced the faster the particle diffuses
compared to the fluctuations of the membrane.

In this context it is interesting to check whether the addi-
tional contribution is finite for an infinite intramembrane dif-
fusion coefficient. For very large diffusion coefficients the
membrane will appear almost stiff for the moving particle.
This corresponds to the situation regarded in Fig. 7, where
we found that the correlation function is well described
by an exponential function (b (R(7); Nb(R(7+A7); 7+A7))
= (b*(R(7); M)exp(—V4DA7/{). For this particular function
Eq. (35) is easily evaluated. In the limit of large times ¢ we
find Do ariee/ D=(b7(R(7) ; D)2/2. Thus Dyyoj arise/ D is inde-
pendent of D, and only involves membrane parameters. It
therefore remains finite. For Bk=1 the largest possible
increase of D/ D is approximately =0.015.

The additional terms to the ratio of projected to intramem-
brane diffusion coefficient Dy g/ D resulting from fits to
(AR3,;,(1)), see Fig. 8, are displayed in Fig. 9. Although an
increase in D causes a larger additional term we still see that
for the regarded diffusion coefficients that are much larger
than those experimentally observed in experiments, the addi-
tional term is always more than two orders of magnitudes
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FIG. 9. Additional contribution Dy 4ifi/ D following from lin-
ear fits to (AR (1), see Fig. 8, as a function of D for Bk=1, 2.

smaller than Dy oreqy/D. For D=10"a*/s the numerically
determined value of D 4iri/ D agrees reasonably well with
the previous estimate for infinite D. Surprisingly, for situa-
tions when one expects the preaveraging approximation to
break down, it still gives reliable results. Even for infinite
diffusion coefficients the results for the projected diffusion
coefficient calculated within the preaveraging approximation
only differ from the actual values by less than two percent
for experimentally accessible membranes.

After this discussion we can understand why our simula-
tion runs agree well with the preaveraging result for all D, as
can be seen in Fig. 5. While our simulation scheme is able to
achieve an accuracy of a few percent within reasonable com-
puting time, the corrections caused by the drift term cannot
be identified directly via the mean square displacement of the
particles. Nevertheless, the explicit evolution of the mem-
brane shape and particle position make it possible to estimate
this correction via the evaluation of correlation functions.

VII. CONCLUSIONS

In this paper we introduce a scheme that allows for the
simultaneous simulation of membrane fluctuations and in-
tramembrane diffusion. The dynamics of the system is ex-
pressed via the equation of motion for a membrane described
in the Monge gauge and the Langevin equation for a particle
diffusing along a surface whose form is given in the Monge
gauge. The simulation algorithm consists of the numerical
integration of these two coupled differential equations. To
validate the membrane fluctuations we compare the height-
height correlation function determined from the simulations
with known analytical results. After ensuring that membrane
fluctuation are reproduced correctly we study free membrane
bound diffusion along the membrane. Since diffusion coeffi-
cients are experimentally often determined from the pro-
jected path a particle covers, we regard the ratio of the mea-
sured, projected diffusion coefficient and the intramembrane
diffusion coefficient that is a parameter of the simulations
and calculations. Both the simulations and the previous cal-
culations that apply a preaveraging approximation, show that
the difference between the measured and the true intramem-
brane diffusion coefficient is largest for small bending rigidi-
ties k and small effective surface tensions o. This can be
understood because small x and o lead to stronger mem-
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brane fluctuations. Thus the actual path and the projected
path differ most. Our calculations reveal a maximum reduc-
tion of the projected diffusion coefficient by approximately
20%. We are aware that the experimental corroboration of
our findings is currently challenging, but with the constantly
increasing accuracy of methods to determine lateral diffusion
it should become feasible in the near future. Such experi-
ments will be important in showing that lateral diffusion is
not only a function of the direct interaction of lipids and
proteins but also depends on material properties of the
membrane.

We also consider simulation runs with different intramem-
brane diffusion coefficients D. The subsequent analysis re-
veals a surprising observation: the resulting ratios D,/ D all
coincide independently of D. Furthermore, the simulation re-
sults agree well with the analytical preaveraging calcula-
tions. Only simulation runs with the smallest regarded diffu-
sion coefficients D are expected to be well described by the
analytical results. For the largest used D, however, when
diffusive and membrane time scales become comparable, one
would a priori assume that the ratio D,,,;/ D from the explicit
simulations would differ from the calculations.

An analysis of the Langevin equation that determines the
movement of the particle, demonstrates that correlations of
the drift term caused by the metric of the membrane are
responsible for a possible increase in the measured diffusion
coefficient. In order to understand the applicability of the
preaveraging approximation we study these correlation func-
tions using our simulation scheme. The relevant correlations
decrease in time not only due to membrane fluctuations but
also due to the movement of the particle. Our simulations
reveal that the influence of the drift term on the projected
diffusion coefficient increases with increasing D. But sur-
prisingly for all, even infinite, intramembrane diffusion coef-
ficients it is very weak in experimentally accessible mem-
branes. In fact the influence is so small—in our simulations
below 2%—that it cannot be directly identified from study-
ing the mean square displacement of the particles within our
scheme. Only the study of the correlation functions of the
drift term using our simulations gives insight into the addi-
tional contributions to the projected diffusion coefficient. For
future studies one may now argue that preaveraging suffices
and the simulation scheme becomes unnecessary. Note that
this reasoning only makes sense as long as the particle dif-
fuses freely. If an additional interaction between membrane
and protein is included the analytical calculation of both the
altered diffusion coefficient and membrane spectrum relies
on approximations which the simulations are capable of
overcoming.

The experimental study of lateral diffusion in membranes
has become a very important and much noticed field that has
revealed many different diffusion phenomena. But so far
only little complementing theoretical or simulational work
has been performed in order to develop a broader under-
standing of experimental findings. In previous work [25] we
regarded the influence of a simple interaction between a dif-
fusing particle and the membrane curvature and found a
strongly altered dependence of the projected diffusion coef-
ficient on bending rigidity and effective tension. It is there-
fore promising that the measurement of lateral diffusion co-
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efficients as a function of membrane properties might shed
light on the interaction between protein and membrane.
While our previous calculations employed several approxi-
mations the method introduced in this paper overcomes
these. Our powerful simulation scheme is, therefore, a good
starting point to investigate the influence of various
membrane-protein interactions not only on lateral diffusion
but also on the spectrum of the membrane. Further effects
that are easily incorporated into our scheme are external in-
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fluences on the membrane, like tethers that resemble the at-
tachment of a membrane to the cytoskeleton. These and other
extensions will be part of our future work.
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